Precalculus

10-01 Sequences

Sequence

- List of numbers following a rule
- $0,3,6,9,12 \leftarrow$ \qquad (ends)
- $0,3,6,9,12, \ldots \leftarrow$ \qquad (doesn't end)
- $n=1,2,3,4,5, \ldots$ (term \qquad) like x
- $a_{n}=0,3,6,9,12, \ldots$ (term ___) like y

Find the $1^{\text {st }} 5$ terms of $a_{n}=5+2 n(-1)^{n}$

Write the rule for the $n^{\text {th }}$ term.
$1,5,9,13,17, \ldots \quad 2,-9,28,-65,126, \ldots$

Recursive Rules

- Use the value of one term to find the \qquad term.
- a_{n} means \qquad term
- a_{n-1} means term
Find the first 5 terms. $a_{1}=6, a_{n}=a_{n-1}+1$

Factorial (!)

- Product of a \qquad number with all the \qquad numbers \qquad than it through 1.
- $6!=6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$
- $5!=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$
- $0!=$

Simplify $\frac{9!}{3!7!} \quad \frac{(n+1)!}{n!}$

Precalculus

10-02 Series

Series

-
- Sequence
- Series

○ \qquad

Summation Notation (Sigma Notation)

$$
\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}
$$

Find each sum
$\sum_{i=1}^{4}(4 i+1)$
$\sum_{k=2}^{5}\left(2+k^{3}\right)$
$\sum_{n=1}^{\infty} \frac{5}{10^{n}}$

Shortcut formulas

$$
\begin{gathered}
1+1+1+1+\cdots=\sum_{i=1}^{n} 1=n \\
1+2+3+4+\cdots=\sum_{i=1}^{n} i=\frac{n(n+1)}{2} \\
1+4+9+16+\cdots=\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6} \\
1+8+27+64+\cdots=\sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4} \\
1+16+81+256+\cdots=\sum_{i=1}^{n} i^{4}=\frac{n(n+1)(2 n+1)\left(3 n^{2}+3 n-1\right)}{30} \\
1+32+243+1024+\cdots=\sum_{i=1}^{n} i^{5}=\frac{n^{2}(n+1)^{2}\left(2 n^{2}+2 n-1\right)}{12} \\
1+2
\end{gathered}
$$

[^0]
Precalculus

10-03 Arithmetic Sequences and Series

Arithmetic Sequence

- Common \qquad (d)
- $3,7,11,15,19, \ldots$

Rule for the $\boldsymbol{n}^{\text {th }}$ term

$$
a_{n}=d n+c
$$

Where $c=a_{1}-d$

$$
a_{n}=a_{1}+(n-1) d
$$

Find the rule for the $n^{\text {th }}$ term for $3,7,11,15,19, \ldots$

The $8^{\text {th }}$ term of an arithmetic sequence is 25 , and the $12^{\text {th }}$ term is 41 . Write the rule for the $n^{\text {th }}$ term.

Recursive Rule for Arithmetic Sequences

$$
\begin{gathered}
a_{1}=a_{1} \\
a_{n}=a_{n-1}+d
\end{gathered}
$$

$$
S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

Find the sum of the integers 1 to 57.

Find the $50^{\text {th }}$ partial sum of the arithmetic sequence $-6,-2,2,6, \ldots$

Evaluate
$\sum_{i=1}^{100}(3 i+2)$

Precalculus

10-04 Geometric Sequences and Series

Geometric Sequence

- Common
(r)
- $1,3,9,27,81,243, \ldots$

Rule for $\boldsymbol{n}^{\text {th }}$ term

$$
a_{n}=a_{1} r^{n-1}
$$

Find the rule for $6,-2, \frac{2}{3}, \ldots$

The $2^{\text {nd }}$ term of a geometric sequence is -18 , the $5^{\text {th }}$ term is $2 / 3$. Find the rule for the $n^{\text {th }}$ term.

Precalculus 10-04
Geometric Series
\(\left.\begin{array}{|lc|}\hline S_{n}=a_{1}\left(\frac{1-r^{n}}{1-r}\right)

S_{\infty}=\frac{a_{1}}{1-r}

where|r|<1\end{array}\right]\)| $\sum_{n=1}^{7} 2^{n-1}$ |
| :--- |

Evaluate

$5+0.5+0.05+0.005+\cdots$

$$
\sum_{n=0}^{\infty} 5\left(\frac{1}{2}\right)^{n}
$$

Precalculus

10-05 Mathematical Induction

- Proofs for \qquad formulas
- Show it works when \qquad
- Show it works for \qquad

Steps for Proof by Induction

1. Show it works for \qquad
2. \qquad formula works for $n=k$
3. Show it works for \qquad

- If proving \qquad formula use $S_{k+1}=S_{k}+a_{k+1}$
Prove $5+7+9+11+13+\cdots+(3+2 n)=n(n+4)$

Prove $1(1-1)+2(2-1)+3(3-1)+\cdots+n(n-1)=\frac{n(n-1)(n+1)}{3}$
\qquad

Prove $(n+1)!>2^{n}$ where $n \geq 2$

Prove 4 is a factor of $5^{n}-1$

Precalculus

10-06 Binomial Theorem

$(x+y)^{0}$
$(x+y)^{1}$
$(x+y)^{2}$
$(x+y)^{3}$
$(x+y)^{4}$

1
$1 x \quad 1 y$

	$x \quad 1 y$	
$1 x^{2}$	$2 x y$	$1 y^{2}$

$1 x^{4}{ }_{4 x^{3} y}^{3 x^{2} y}{ }_{6 x^{2} y^{2}}^{3 x y^{2}}{ }_{4 x y^{3}}{ }^{1 y^{3}} 1 y^{4}$

1. terms
2. Powers of x count \qquad y's count \qquad
3. Sum of exponents of each term $=$ \qquad
4. Coefficients are \qquad
Binomial theorem

$$
(a+b)^{n}=\sum_{r=0}^{n}{ }_{n} C_{r} a^{n-r} b^{r}
$$

- where ${ }_{n} C_{r}=\frac{n!}{(n-r)!r!}$

Evaluate

$$
{ }_{9} C_{2}
$$

$\binom{8}{8}$
$\binom{4}{2}$

Expand $(x+2)^{4}$

Expand $\left(3-x^{2}\right)^{5}$

Find the coefficient of the term $a^{4} b^{7}$ in $(2 a-3 b)^{11}$

Precalculus

10-07 Counting Principles

Fundamental Counting Principle

- If events E_{1} and E_{2} occur in m_{1} and m_{2} ways, the number of ways \qquad events can occur is \qquad .
A lock will open with the right choice of 3 numbers. How many different sets of 3 numbers can you choose if each number is from 1 to 30 inclusive? (a) with repetition (b) without repetition

How many license plates can be made if each is 2 letters follow by 4-digits? (a) with repetition (b) without repetition

Permutation

- Number of ways to \qquad n objects taken r at a time

$$
{ }_{n} P_{r}=\frac{n!}{(n-r)!}
$$

How many ways can 8 children line up in a row?

A club has 24 members, how many ways can 5 officers be selected?

Distinguishable Permutations

- We want the orders that look \qquad (choosing \qquad the objects)

$$
\frac{n!}{q_{1}!\cdot q_{2}!\cdot q_{3}!\cdots}
$$

- Where $n=$ number of objects; $q=$ how many times each is repeated

How many distinguishable ways to order the letters in BANANA?

Combinations

- Grouping of objects \qquad order

$$
{ }_{n} C_{r}=\frac{n!}{(n-r)!r!}
$$

There are 31 students. How many different groups of 4 can be made?

You are forming a 10 -person committee from 9 women and 12 men. How many different committees if 5 women and 5 men?

Precalculus

10-08 Probability

Probability

- Number from \qquad to \qquad indicating how \qquad something is to happen.
- $0=$ \qquad happens
- 1 = \qquad happens

$$
P(A)=\frac{\text { favorable outcomes }}{\text { total outcomes }}
$$

A box contains 3 red marbles, 5 black marbles, and 2 yellow marbles. If a marble is selected at random, what is the probability of choosing yellow?

2 dice are rolled, what is the probability that the sum is $8 ?$

Compound Events

- ___event with \qquad accepted outcomes

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

- If $P(A \cap B)=0$, then called \qquad exclusive
You draw one card from a standard 52-card deck. What is the probability of
 drawing a heart or red?

Multiple Events

- ___events with \qquad outcomes
- Independent - Event A \qquad affect event B

$$
P(A \text { and } B)=P(A) \cdot P(B)
$$

- Dependent - Event A \qquad affect event B

$$
P(A \text { and } B)=P(A) \cdot P(B \mid A)
$$

- where $P(B \mid A)$ is the probability that B occurs given that A already occured

You draw 2 cards from a standard 52-card deck. What is the probability you draw a heart and a red? (a) with replacement (b) without replacement

Complement

- \qquad

$$
P(\bar{A})=1-P(A)
$$

- $\quad \mathrm{P}(\mathrm{n} \geq 1)$ is easier with the complement \qquad $P(0)$

Created by Richard Wright - Andrews Academy
To be used with Richard Wright's Precalculus

[^0]: Evaluate
 $\sum_{i=1}^{5}\left(3 i^{2}-5 i\right)$

